Skip to content

Summary of 9_Xgboost_SelectedFeatures

<< Go back

Extreme Gradient Boosting (Xgboost)

  • n_jobs: 6
  • objective: multi:softprob
  • eta: 0.075
  • max_depth: 5
  • min_child_weight: 1
  • subsample: 1.0
  • colsample_bytree: 1.0
  • eval_metric: f1
  • num_class: 6
  • explain_level: 1

Validation

  • validation_type: kfold
  • k_folds: 5
  • shuffle: True
  • stratify: True
  • random_seed: 42

Optimized metric

f1

Training time

37.1 seconds

Metric details

0 1 2 3 4 5 accuracy macro avg weighted avg logloss
precision 0.9708 0.967784 0.969913 0.983632 0.99018 0.997916 0.979863 0.980037 0.979944 0.059119
recall 0.985784 0.961588 0.970408 0.989198 0.992346 0.975548 0.979863 0.979145 0.979863 0.059119
f1-score 0.978235 0.964676 0.970161 0.986407 0.991262 0.986605 0.979863 0.979557 0.979868 0.059119
support 2462 1562 1960 1944 1829 1963 0.979863 11720 11720 0.059119

Confusion matrix

Predicted as 0 Predicted as 1 Predicted as 2 Predicted as 3 Predicted as 4 Predicted as 5
Labeled as 0 2427 6 5 21 0 3
Labeled as 1 2 1502 51 1 6 0
Labeled as 2 9 43 1902 2 4 0
Labeled as 3 15 1 1 1923 4 0
Labeled as 4 4 0 2 7 1815 1
Labeled as 5 43 0 0 1 4 1915

Learning curves

Learning curves

Permutation-based Importance

Permutation-based Importance

Confusion Matrix

Confusion Matrix

Normalized Confusion Matrix

Normalized Confusion Matrix

ROC Curve

ROC Curve

Precision Recall Curve

Precision Recall Curve

<< Go back