30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585 | class Ensemble:
"""
stack models to build level 2 ensemble.
"""
algorithm_name = "Greedy Ensemble"
algorithm_short_name = "Ensemble"
def __init__(
self,
optimize_metric="logloss",
ml_task=BINARY_CLASSIFICATION,
is_stacked=False,
max_single_prediction_time=None,
fairness_metric=None,
fairness_threshold=None,
privileged_groups=None,
underprivileged_groups=None,
):
self.library_version = "0.1"
self.uid = str(uuid.uuid4())
self.metric = Metric({"name": optimize_metric})
self.best_loss = self.metric.get_maximum() # the best loss obtained by ensemble
self.models_map = None
self.selected_models = []
self.train_time = None
self.total_best_sum = None # total sum of predictions, the oof of ensemble
self.target = None
self.target_columns = None
self.sample_weight = None
self._ml_task = ml_task
self._optimize_metric = optimize_metric
self._is_stacked = is_stacked
self._additional_metrics = None
self._threshold = None
self._name = "Ensemble_Stacked" if is_stacked else "Ensemble"
self._scores = []
self.oof_predictions = None
self._oof_predictions_fname = None
self._single_prediction_time = None # prediction time on single sample
self._max_single_prediction_time = max_single_prediction_time
self.model_prediction_time = {}
self._fairness_metric = fairness_metric
self._fairness_threshold = fairness_threshold
self._privileged_groups = privileged_groups
self._underprivileged_groups = underprivileged_groups
self._is_fair = None
self.sensitive_features = None
def get_train_time(self):
return self.train_time
def get_final_loss(self):
return self.best_loss
def is_valid(self):
return len(self.selected_models) > 1
def is_fast_enough(self, max_single_prediction_time):
# dont need to check
if max_single_prediction_time is None:
return True
# no iformation about prediction time
if self._single_prediction_time is None:
return True
return self._single_prediction_time < max_single_prediction_time
def get_type(self):
prefix = "" # "Stacked" if self._is_stacked else ""
return prefix + self.algorithm_short_name
def get_name(self):
return self._name
def involved_model_names(self):
"""Returns the list of all models involved in the current model.
For single model, it returns the list with the name of the model.
For ensemble model, it returns the list with the name of the ensemble and all internal models
(used to build ensemble).
For single model but trained on stacked data, it returns the list with the name of the model
(names of models used in stacking are not included)."""
if self.selected_models is None or not self.selected_models:
return [self._name]
l = []
for m in self.selected_models:
l += m["model"].involved_model_names()
return [self._name] + l
def get_metric_name(self):
return self.metric.name
def get_metric(self):
return self.metric
def get_out_of_folds(self):
"""Needed when ensemble is treated as model and we want to compute additional metrics for it"""
# single prediction (in case of binary classification and regression)
if self.oof_predictions is not None:
return self.oof_predictions.copy(deep=True)
if self._oof_predictions_fname is not None:
self.oof_predictions = pd.read_csv(self._oof_predictions_fname)
return self.oof_predictions.copy(deep=True)
ensemble_oof = pd.DataFrame(
data=self.total_best_sum, columns=self.total_best_sum.columns
)
ensemble_oof["target"] = self.target
if self.sample_weight is not None:
ensemble_oof["sample_weight"] = self.sample_weight
# if self.sensitive_features is not None:
# for col in self.sensitive_features.columns:
# ensemble_oof[col] = self.sensitive_features[col]
self.oof_predictions = ensemble_oof
return ensemble_oof
def _get_mean(self, oof_selected, best_sum, best_count):
resp = copy.deepcopy(oof_selected)
if best_count > 1:
resp += best_sum
resp /= float(best_count)
return resp
def get_oof_matrix(self, models):
# remember models, will be needed in predictions
self.models_map = {m.get_name(): m for m in models}
if self._max_single_prediction_time is not None:
self.model_prediction_time = {
m.get_name(): m._single_prediction_time for m in models
}
if not [
m for m in models if m.is_fast_enough(self._max_single_prediction_time)
]:
raise NotTrainedException(
"Can't contruct ensemble with prediction time smaller than limit."
)
# check if we can construct fair ensemble
if self._fairness_metric is not None:
if not [m for m in models if m.is_fair()]:
raise NotTrainedException("Can't contruct fair ensemble.")
oofs = {}
sensitive_features = None
for m in models:
# do not use model with RandomFeature
if "RandomFeature" in m.get_name():
continue
# ensemble only the same level of stack
# if m._is_stacked != self._is_stacked:
# continue
oof = m.get_out_of_folds()
prediction_cols = [c for c in oof.columns if "prediction" in c]
oofs[m.get_name()] = oof[prediction_cols] # oof["prediction"]
if self.target is None:
self.target_columns = [c for c in oof.columns if "target" in c]
self.target = oof[
self.target_columns
] # it will be needed for computing advance model statistics
if self.sample_weight is None and "sample_weight" in oof.columns:
self.sample_weight = oof["sample_weight"]
sensitive_cols = [c for c in oof.columns if "sensitive" in c]
if sensitive_cols and sensitive_features is None:
sensitive_features = oof[sensitive_cols]
return oofs, self.target, self.sample_weight, sensitive_features
def get_additional_metrics(self):
if self._additional_metrics is None:
logger.debug("Get additional metrics for Ensemble")
# 'target' - the target after processing used for model training
# 'prediction' - out of folds predictions of the model
oof_predictions = self.get_out_of_folds()
prediction_cols = [c for c in oof_predictions.columns if "prediction" in c]
target_cols = [c for c in oof_predictions.columns if "target" in c]
oof_preds = oof_predictions[prediction_cols]
if self._ml_task == MULTICLASS_CLASSIFICATION:
cols = oof_preds.columns.tolist()
# prediction_
labels = {i: v[11:] for i, v in enumerate(cols)}
oof_preds.loc[:, "label"] = np.argmax(
np.array(oof_preds[prediction_cols]), axis=1
)
oof_preds.loc[:, "label"] = oof_preds["label"].map(labels)
sample_weight = None
if "sample_weight" in oof_predictions.columns:
sample_weight = oof_predictions["sample_weight"]
self._additional_metrics = AdditionalMetrics.compute(
oof_predictions[target_cols],
oof_preds,
sample_weight,
self._ml_task,
self.sensitive_features,
self._fairness_metric
if self._ml_task != REGRESSION
else f"{self._fairness_metric}@{self.get_metric_name()}",
self._fairness_threshold,
self._privileged_groups,
self._underprivileged_groups,
)
if self._ml_task == BINARY_CLASSIFICATION:
self._threshold = float(self._additional_metrics["threshold"])
return self._additional_metrics
def get_sensitive_features_names(self):
metrics = self.get_additional_metrics()
fm = metrics.get("fairness_metrics", {})
return [i for i in list(fm.keys()) if i != "fairness_optimization"]
def get_fairness_metric(self, col_name):
metrics = self.get_additional_metrics()
fm = metrics.get("fairness_metrics", {})
return fm.get(col_name, {}).get("fairness_metric_value")
def get_fairness_optimization(self):
metrics = self.get_additional_metrics()
fm = metrics.get("fairness_metrics", {})
return fm.get("fairness_optimization", {})
def get_worst_fairness(self):
# We have fairness metrics per sensitive feature.
# The worst fairness metric is:
# - for ratio metrics, the lowest fairness value from all sensitive features
# - for difference metrics, the highest fairness value from all sensitive features
# It is needed as bias mitigation stop criteria.
metrics = self.get_additional_metrics()
fm = metrics.get("fairness_metrics", {})
worst_value = None
for col_name, values in fm.items():
if col_name == "fairness_optimization":
continue
if "ratio" in self._fairness_metric.lower():
if worst_value is None:
worst_value = values.get("fairness_metric_value", 0)
else:
worst_value = min(
worst_value, values.get("fairness_metric_value", 0)
)
else:
if worst_value is None:
worst_value = values.get("fairness_metric_value", 1)
else:
worst_value = max(
worst_value, values.get("fairness_metric_value", 1)
)
return worst_value
def get_best_fairness(self):
# We have fairness metrics per sensitive feature.
# The best fairness metric is:
# - for ratio metrics, the highest fairness value from all sensitive features
# - for difference metrics, the lowest fairness value from all sensitive features
# It is needed as bias mitigation stop criteria.
metrics = self.get_additional_metrics()
fm = metrics.get("fairness_metrics", {})
best_value = None
for col_name, values in fm.items():
if col_name == "fairness_optimization":
continue
if "ratio" in self._fairness_metric.lower():
if best_value is None:
best_value = values.get("fairness_metric_value", 0)
else:
best_value = max(best_value, values.get("fairness_metric_value", 0))
else:
if best_value is None:
best_value = values.get("fairness_metric_value", 1)
else:
best_value = min(best_value, values.get("fairness_metric_value", 1))
return best_value
def is_fair(self):
if self._is_fair is not None:
return self._is_fair
metrics = self.get_additional_metrics()
fm = metrics.get("fairness_metrics", {})
for col, m in fm.items():
if col == "fairness_optimization":
continue
if not m.get("is_fair", True):
self._is_fair = False
return False
self._is_fair = True
return False
def fit(self, oofs, y, sample_weight=None, sensitive_features=None):
logger.debug("Ensemble.fit")
self.sensitive_features = sensitive_features
start_time = time.time()
selected_algs_cnt = 0 # number of selected algorithms
self.best_algs = [] # selected algoritms indices from each loop
total_prediction_time = 0
best_sum = None # sum of best algorihtms
for j in range(len(oofs)): # iterate over all solutions
min_score = self.metric.get_maximum()
best_model = None
# try to add some algorithm to the best_sum to minimize metric
for model_name in oofs.keys():
if (
self._max_single_prediction_time
and model_name in self.model_prediction_time
):
if (
total_prediction_time + self.model_prediction_time[model_name]
> self._max_single_prediction_time
):
continue
# skip unfair models
if (
self._fairness_metric is not None
and not self.models_map[model_name].is_fair()
):
continue
y_ens = self._get_mean(oofs[model_name], best_sum, j + 1)
score = self.metric(y, y_ens, sample_weight)
if self.metric.improvement(previous=min_score, current=score):
min_score = score
best_model = model_name
if best_model is None:
continue
# there is improvement, save it
# save scores for plotting learning curve
# if we optimize negative, then we need to multiply by -1.0
# to save correct values in the learning curve
sign = -1.0 if Metric.optimize_negative(self.metric.name) else 1.0
self._scores += [sign * min_score]
if self.metric.improvement(previous=self.best_loss, current=min_score):
self.best_loss = min_score
selected_algs_cnt = j
self.best_algs.append(best_model) # save the best algoritm
# update best_sum value
best_sum = (
oofs[best_model] if best_sum is None else best_sum + oofs[best_model]
)
if j == selected_algs_cnt:
self.total_best_sum = copy.deepcopy(best_sum)
# update prediction time estimate
if self._max_single_prediction_time is not None:
total_prediction_time = np.sum(
[
self.model_prediction_time[name]
for name in np.unique(self.best_algs)
]
)
# end of main loop #
if not self.best_algs:
raise NotTrainedException("Ensemble wasn't fitted.")
# keep oof predictions of ensemble
self.total_best_sum /= float(selected_algs_cnt + 1)
self.best_algs = self.best_algs[: (selected_algs_cnt + 1)]
logger.debug("Selected models for ensemble:")
for model_name in np.unique(self.best_algs):
self.selected_models += [
{
"model": self.models_map[model_name],
"repeat": float(self.best_algs.count(model_name)),
}
]
logger.debug(f"{model_name} {self.best_algs.count(model_name)}")
self._additional_metrics = self.get_additional_metrics()
self.train_time = time.time() - start_time
def predict(self, X, X_stacked=None):
logger.debug(
"Ensemble.predict with {} models".format(len(self.selected_models))
)
y_predicted_ensemble = None
total_repeat = 0.0
for selected in self.selected_models:
model = selected["model"]
repeat = selected["repeat"]
total_repeat += repeat
if model._is_stacked:
y_predicted_from_model = model.predict(X_stacked)
else:
y_predicted_from_model = model.predict(X)
prediction_cols = []
if self._ml_task in [BINARY_CLASSIFICATION, MULTICLASS_CLASSIFICATION]:
prediction_cols = [
c for c in y_predicted_from_model.columns if "prediction_" in c
]
else: # REGRESSION
prediction_cols = ["prediction"]
y_predicted_from_model = y_predicted_from_model[prediction_cols]
y_predicted_ensemble = (
y_predicted_from_model * repeat
if y_predicted_ensemble is None
else y_predicted_ensemble + y_predicted_from_model * repeat
)
y_predicted_ensemble /= total_repeat
if self._ml_task == MULTICLASS_CLASSIFICATION:
cols = y_predicted_ensemble.columns.tolist()
# prediction_
labels = {i: v[11:] for i, v in enumerate(cols)}
y_predicted_ensemble["label"] = np.argmax(
np.array(y_predicted_ensemble[prediction_cols]), axis=1
)
y_predicted_ensemble["label"] = y_predicted_ensemble["label"].map(labels)
return y_predicted_ensemble
def to_json(self):
models_json = []
for selected in self.selected_models:
model = selected["model"]
repeat = selected["repeat"]
models_json += [{"model": model.to_json(), "repeat": repeat}]
json_desc = {
"library_version": self.library_version,
"algorithm_name": self.algorithm_name,
"algorithm_short_name": self.algorithm_short_name,
"uid": self.uid,
"models": models_json,
}
return json_desc
def from_json(self, json_desc):
self.library_version = json_desc.get("library_version", self.library_version)
self.algorithm_name = json_desc.get("algorithm_name", self.algorithm_name)
self.algorithm_short_name = json_desc.get(
"algorithm_short_name", self.algorithm_short_name
)
self.uid = json_desc.get("uid", self.uid)
self.selected_models = []
models_json = json_desc.get("models")
for selected in models_json:
model = selected["model"]
repeat = selected["repeat"]
il = ModelFramework(model.get("params"))
il.from_json(model)
self.selected_models += [
# {"model": LearnerFactory.load(model), "repeat": repeat}
{"model": il, "repeat": repeat}
]
def save(self, results_path, model_subpath):
model_path = os.path.join(results_path, model_subpath)
logger.info(f"Save the ensemble to {model_path}")
predictions = self.get_out_of_folds()
predictions_fname = os.path.join(model_subpath, f"predictions_ensemble.csv")
self._oof_predictions_fname = os.path.join(results_path, predictions_fname)
predictions.to_csv(self._oof_predictions_fname, index=False)
with open(os.path.join(model_path, "ensemble.json"), "w") as fout:
ms = []
for selected in self.selected_models:
ms += [{"model": selected["model"]._name, "repeat": selected["repeat"]}]
desc = {
"name": self._name,
"ml_task": self._ml_task,
"optimize_metric": self._optimize_metric,
"selected_models": ms,
"predictions_fname": predictions_fname,
"metric_name": self.get_metric_name(),
"final_loss": self.get_final_loss(),
"train_time": self.get_train_time(),
"is_stacked": self._is_stacked,
}
if self._threshold is not None:
desc["threshold"] = self._threshold
fout.write(json.dumps(desc, indent=4))
LearningCurves.plot_for_ensemble(self._scores, self.metric.name, model_path)
# call additional metics just to be sure they are computed
self._additional_metrics = self.get_additional_metrics()
AdditionalMetrics.save(
self._additional_metrics, self._ml_task, self.model_markdown(), model_path
)
with open(os.path.join(model_path, "status.txt"), "w") as fout:
fout.write("ALL OK!")
def model_markdown(self):
select_models_desc = []
for selected in self.selected_models:
select_models_desc += [
{"model": selected["model"]._name, "repeat": selected["repeat"]}
]
desc = f"# Summary of {self.get_name()}\n\n"
desc += "[<< Go back](../README.md)\n\n"
desc += "\n## Ensemble structure\n"
selected = pd.DataFrame(select_models_desc)
desc += tabulate(selected.values, ["Model", "Weight"], tablefmt="pipe")
desc += "\n"
return desc
@staticmethod
def load(results_path, model_subpath, models_map):
model_path = os.path.join(results_path, model_subpath)
logger.info(f"Loading ensemble from {model_path}")
json_desc = json.load(open(os.path.join(model_path, "ensemble.json")))
ensemble = Ensemble(json_desc.get("optimize_metric"), json_desc.get("ml_task"))
ensemble._name = json_desc.get("name", ensemble._name)
ensemble._threshold = json_desc.get("threshold", ensemble._threshold)
for m in json_desc.get("selected_models", []):
ensemble.selected_models += [
{"model": models_map[m["model"]], "repeat": m["repeat"]}
]
ensemble.best_loss = json_desc.get("final_loss", ensemble.best_loss)
ensemble.train_time = json_desc.get("train_time", ensemble.train_time)
ensemble._is_stacked = json_desc.get("is_stacked", ensemble._is_stacked)
predictions_fname = json_desc.get("predictions_fname")
if predictions_fname is not None:
ensemble._oof_predictions_fname = os.path.join(
results_path, predictions_fname
)
return ensemble
|