Skip to content

监督学习   Supervised-training

ModelFramework class

Source code in supervised\model_framework.py
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
class ModelFramework:
    def __init__(self, params, callbacks=[]):
        logger.debug("ModelFramework.__init__")
        self.uid = str(uuid.uuid4())

        for i in ["learner", "validation_strategy"]:  # mandatory parameters
            if i not in params:
                msg = "Missing {0} parameter in ModelFramework params".format(i)
                logger.error(msg)
                raise ValueError(msg)

        self.params = params
        self.callbacks = CallbackList(callbacks)

        self._name = params.get("name", "model")
        self.additional_params = params.get("additional")
        self.preprocessing_params = params.get("preprocessing")
        self.validation_params = params.get("validation_strategy")
        self.learner_params = params.get("learner")

        self._ml_task = params.get("ml_task")
        self._explain_level = params.get("explain_level")
        self._is_stacked = params.get("is_stacked", False)

        self.validation = None
        self.preprocessings = []
        self.learners = []

        self.train_time = None
        self.final_loss = None
        self.metric_name = None
        self.oof_predictions = None
        self._additional_metrics = None
        self._threshold = None  # used only for binary classifiers
        self._max_time_for_learner = params.get("max_time_for_learner", 3600)
        self._oof_predictions_fname = None
        self._single_prediction_time = None  # prediction time on single sample
        self._optuna_time_budget = params.get("optuna_time_budget")
        self._optuna_init_params = params.get("optuna_init_params", {})
        self._optuna_verbose = params.get("optuna_verbose", True)

        self._fairness_metric = params.get("fairness_metric")
        self._fairness_threshold = params.get("fairness_threshold")
        self._privileged_groups = params.get("privileged_groups", [])
        self._underprivileged_groups = params.get("underprivileged_groups", [])
        self._fairness_optimization = params.get("fairness_optimization")
        self._is_fair = None

        # the automl random state from AutoML constructor, used in Optuna optimizer
        self._automl_random_state = params.get("automl_random_state", 42)

    def get_train_time(self):
        return self.train_time

    def predictions(
        self,
        learner,
        preproces,
        X_train,
        y_train,
        sample_weight,
        sensitive_features,
        X_validation,
        y_validation,
        sample_weight_validation,
        sensitive_features_validation,
    ):
        y_train_true = y_train
        y_train_predicted = learner.predict(X_train)
        y_validation_true = y_validation
        y_validation_predicted = learner.predict(X_validation)

        y_train_true = preproces.inverse_scale_target(y_train_true)
        y_train_predicted = preproces.inverse_scale_target(y_train_predicted)
        y_validation_true = preproces.inverse_scale_target(y_validation_true)
        y_validation_predicted = preproces.inverse_scale_target(y_validation_predicted)

        y_validation_columns = []
        if self._ml_task == MULTICLASS_CLASSIFICATION:
            # y_train_true = preproces.inverse_categorical_target(y_train_true)
            # y_validation_true = preproces.inverse_categorical_target(y_validation_true)
            # get columns, omit the last one (it is label)
            y_validation_columns = preproces.prepare_target_labels(
                y_validation_predicted
            ).columns.tolist()[:-1]
        elif self._ml_task == BINARY_CLASSIFICATION:
            class_names = self.preprocessings[-1].get_target_class_names()
            y_validation_columns = "prediction"
            if not ("0" in class_names and "1" in class_names):
                y_validation_columns = (
                    f"prediction_0_for_{class_names[0]}_1_for_{class_names[1]}"
                )
        else:
            y_validation_columns = "prediction"

        return {
            "y_train_true": y_train_true,
            "y_train_predicted": y_train_predicted,
            "sample_weight": sample_weight,
            "sensitive_features": sensitive_features,
            "y_validation_true": y_validation_true,
            "y_validation_predicted": y_validation_predicted,
            "sample_weight_validation": sample_weight_validation,
            "sensitive_features_validation": sensitive_features_validation,
            "validation_index": X_validation.index,
            "validation_columns": y_validation_columns,
        }

    def train(self, results_path, model_subpath):
        logger.debug(f"ModelFramework.train {self.learner_params.get('model_type')}")

        start_time = time.time()
        np.random.seed(self.learner_params["seed"])

        optuna_tuner = None
        if self._optuna_time_budget is not None and OptunaTuner.is_optimizable(
            self.learner_params.get("model_type", "")
        ):
            optuna_tuner = OptunaTuner(
                results_path,
                ml_task=self._ml_task,
                eval_metric=self.get_metric(),
                time_budget=self._optuna_time_budget,
                init_params=self._optuna_init_params,
                verbose=self._optuna_verbose,
                n_jobs=self.learner_params.get("n_jobs", -1),
                random_state=self._automl_random_state,
            )

        self.validation = ValidationStep(self.validation_params)

        repeats = self.validation.get_repeats()
        for repeat in range(repeats):
            for k_fold in range(self.validation.get_n_splits()):
                train_data, validation_data = self.validation.get_split(k_fold, repeat)
                logger.debug(
                    "Data split, train X:{} y:{}, validation X:{}, y:{}".format(
                        train_data["X"].shape,
                        train_data["y"].shape,
                        validation_data["X"].shape,
                        validation_data["y"].shape,
                    )
                )
                if "sample_weight" in train_data:
                    logger.debug("Sample weight available during the training.")

                # the proprocessing is done at every validation step
                self.preprocessings += [
                    Preprocessing(
                        self.preprocessing_params, self.get_name(), k_fold, repeat
                    )
                ]

                X_train, y_train, sample_weight = self.preprocessings[
                    -1
                ].fit_and_transform(
                    train_data["X"], train_data["y"], train_data.get("sample_weight")
                )
                (
                    X_validation,
                    y_validation,
                    sample_weight_validation,
                ) = self.preprocessings[-1].transform(
                    validation_data["X"],
                    validation_data["y"],
                    validation_data.get("sample_weight"),
                )

                # get sensitive features from data split
                sensitive_features = train_data.get("sensitive_features")
                sensitive_features_validation = validation_data.get(
                    "sensitive_features"
                )

                if optuna_tuner is not None:
                    optuna_start_time = time.time()
                    self.learner_params = optuna_tuner.optimize(
                        self.learner_params.get("model_type", ""),
                        self.params.get("data_type", ""),
                        X_train,
                        y_train,
                        sample_weight,
                        X_validation,
                        y_validation,
                        sample_weight_validation,
                        self.learner_params,
                    )
                    # exclude optuna optimize time from model training
                    start_time += time.time() - optuna_start_time

                self.learner_params["explain_level"] = self._explain_level
                self.learners += [
                    AlgorithmFactory.get_algorithm(copy.deepcopy(self.learner_params))
                ]
                learner = self.learners[-1]
                learner.set_learner_name(k_fold, repeat, repeats)

                self.callbacks.add_and_set_learner(learner)
                self.callbacks.on_learner_train_start()

                log_to_file = os.path.join(
                    results_path, model_subpath, f"{learner.name}_training.log"
                )

                for i in range(learner.max_iters):
                    self.callbacks.on_iteration_start()

                    learner.fit(
                        X_train,
                        y_train,
                        sample_weight,
                        X_validation,
                        y_validation,
                        sample_weight_validation,
                        log_to_file,
                        self._max_time_for_learner,
                    )

                    if self.params.get("injected_sample_weight", False):
                        # print("Dont use sample weight in model evaluation")
                        sample_weight = None
                        sample_weight_validation = None

                    self.callbacks.on_iteration_end(
                        {"iter_cnt": i},
                        self.predictions(
                            learner,
                            self.preprocessings[-1],
                            X_train,
                            y_train,
                            sample_weight,
                            sensitive_features,
                            X_validation,
                            y_validation,
                            sample_weight_validation,
                            sensitive_features_validation,
                        ),
                    )

                    if learner.stop_training:
                        break
                    learner.update({"step": i})

                # end of learner iters loop
                self.callbacks.on_learner_train_end()

                model_path = os.path.join(results_path, model_subpath)
                learner.interpret(
                    X_train,
                    y_train,
                    X_validation,
                    y_validation,
                    model_file_path=model_path,
                    learner_name=learner.name,
                    class_names=self.preprocessings[-1].get_target_class_names(),
                    metric_name=self.get_metric_name(),
                    ml_task=self._ml_task,
                    explain_level=self._explain_level,
                )

                # save learner and free the memory
                p = os.path.join(model_path, learner.get_fname())
                learner.save(p)
                del learner.model
                learner.model = None
                # end of learner training

                # clear data
                del X_train
                del y_train
                del X_validation
                del y_validation

                if sample_weight is not None:
                    del sample_weight
                    del train_data["sample_weight"]
                if sample_weight_validation is not None:
                    del sample_weight_validation
                    del validation_data["sample_weight"]

                del train_data["X"]
                del train_data["y"]
                del validation_data["X"]
                del validation_data["y"]
                del train_data
                del validation_data

                gc.collect()

        # end of validation loop
        self.callbacks.on_framework_train_end()
        # self.get_additional_metrics()
        self._additional_metrics = self.get_additional_metrics()

        self.train_time = time.time() - start_time
        logger.debug("ModelFramework end of training")

    def release_learners(self):
        for learner in self.learners:
            if learner.model is not None:
                del learner.model
                learner.model = None

    def get_metric_name(self):
        if self.metric_name is not None:
            return self.metric_name
        early_stopping = self.callbacks.get("early_stopping")
        if early_stopping is None:
            return None
        self.metric_name = early_stopping.metric.name
        return early_stopping.metric.name

    def get_metric(self):
        early_stopping = self.callbacks.get("early_stopping")
        if early_stopping:
            return early_stopping.metric
        return Metric({"name": self.get_metric_name()})

    def get_out_of_folds(self):
        if self.oof_predictions is not None:
            return self.oof_predictions.copy(deep=True)

        if self._oof_predictions_fname is not None:
            self.oof_predictions = pd.read_csv(self._oof_predictions_fname)
            return self.oof_predictions.copy(deep=True)

        early_stopping = self.callbacks.get("early_stopping")
        if early_stopping is None:
            return None
        self.oof_predictions = early_stopping.best_y_oof

        ###############################################################
        # in case of one-hot coded multiclass target
        target_cols = [
            c for c in self.oof_predictions.columns.tolist() if "target" in c
        ]
        if len(target_cols) > 1:
            target = self.oof_predictions[target_cols[0]].copy()
            target.name = "target"
            for i, t in enumerate(target_cols):
                target[self.oof_predictions[t] == 1] = i
            self.oof_predictions.drop(target_cols, axis=1, inplace=True)

            self.oof_predictions.insert(0, "target", np.array(target))

        return early_stopping.best_y_oof

    def get_final_loss(self):
        if self.final_loss is not None:
            return self.final_loss
        early_stopping = self.callbacks.get("early_stopping")
        if early_stopping is None:
            return None
        self.final_loss = early_stopping.final_loss
        return early_stopping.final_loss

    """
    def get_metric_logs(self):
        metric_logger = self.callbacks.get("metric_logger")
        if metric_logger is None:
            return None
        return metric_logger.loss_values
    """

    def get_type(self):
        return self.learner_params.get("model_type")

    def get_name(self):
        return self._name

    def involved_model_names(self):
        """Returns the list of all models involved in the current model.
        For single model, it returns the list with the name of the model.
        For ensemble model, it returns the list with the name of the ensemble and all internal models
        (used to build ensemble).
        For single model but trained on stacked data, it returns the list with the name of the model
        (names of models used in stacking are not included)."""
        return [self._name]

    def is_valid(self):
        """is_valid is used in Ensemble to check if it has more than 1 model in it.
        If Ensemble has only 1 model in it, then Ensemble shouldn't be used as best model
        """
        return True

    def is_fast_enough(self, max_single_prediction_time):
        # dont need to check
        if max_single_prediction_time is None:
            return True

        # no iformation about prediction time
        if self._single_prediction_time is None:
            return True

        return self._single_prediction_time < max_single_prediction_time

    def predict(self, X):
        logger.debug("ModelFramework.predict")

        if self.learners is None or len(self.learners) == 0:
            raise Exception("Learnes are not initialized")
        # run predict on all learners and return the average
        y_predicted = None  # np.zeros((X.shape[0],))
        for ind, learner in enumerate(self.learners):
            # preprocessing goes here
            X_data, _, _ = self.preprocessings[ind].transform(X.copy(), None)
            y_p = learner.predict(X_data)
            y_p = self.preprocessings[ind].inverse_scale_target(y_p)

            y_predicted = y_p if y_predicted is None else y_predicted + y_p

        y_predicted_average = y_predicted / float(len(self.learners))

        y_predicted_final = self.preprocessings[0].prepare_target_labels(
            y_predicted_average
        )

        return y_predicted_final

    def get_additional_metrics(self):
        if self._additional_metrics is None:
            # 'target' - the target after processing used for model training
            # 'prediction' - out of folds predictions of the model
            oof_predictions = self.get_out_of_folds()
            prediction_cols = [c for c in oof_predictions.columns if "prediction" in c]
            target_cols = [c for c in oof_predictions.columns if "target" in c]

            target = oof_predictions[target_cols]

            oof_preds = None
            if self._ml_task == MULTICLASS_CLASSIFICATION:
                oof_preds = self.preprocessings[0].prepare_target_labels(
                    oof_predictions[prediction_cols].values
                )
            else:
                oof_preds = oof_predictions[prediction_cols]

            sample_weight = None
            if "sample_weight" in oof_predictions.columns:
                sample_weight = oof_predictions["sample_weight"]

            sensitive_features = None
            sensitive_cols = [c for c in oof_predictions.columns if "sensitive" in c]
            if sensitive_cols:
                sensitive_features = oof_predictions[sensitive_cols]

            self._additional_metrics = AdditionalMetrics.compute(
                target,
                oof_preds,
                sample_weight,
                self._ml_task,
                sensitive_features,
                self._fairness_metric
                if self._ml_task != REGRESSION
                else f"{self._fairness_metric}@{self.get_metric_name()}",
                self._fairness_threshold,
                self._privileged_groups,
                self._underprivileged_groups,
                self._fairness_optimization,
            )
            if self._ml_task == BINARY_CLASSIFICATION:
                self._threshold = float(self._additional_metrics["threshold"])
        return self._additional_metrics

    def get_sensitive_features_names(self):
        metrics = self.get_additional_metrics()
        fm = metrics.get("fairness_metrics", {})
        return [i for i in list(fm.keys()) if i != "fairness_optimization"]

    def get_fairness_metric(self, col_name):
        metrics = self.get_additional_metrics()
        fm = metrics.get("fairness_metrics", {})
        return fm.get(col_name, {}).get("fairness_metric_value")

    def get_fairness_optimization(self):
        metrics = self.get_additional_metrics()
        fm = metrics.get("fairness_metrics", {})
        return fm.get("fairness_optimization", {})

    def get_worst_fairness(self):
        # We have fairness metrics per sensitive feature.
        # The worst fairness metric is:
        # - for ratio metrics, the lowest fairness value from all sensitive features
        # - for difference metrics, the highest fairness value from all sensitive features
        # It is needed as bias mitigation stop criteria.

        metrics = self.get_additional_metrics()

        fm = metrics.get("fairness_metrics", {})
        worst_value = None
        for col_name, values in fm.items():
            if col_name == "fairness_optimization":
                continue
            if "ratio" in self._fairness_metric.lower():
                if worst_value is None:
                    worst_value = values.get("fairness_metric_value", 0)
                else:
                    worst_value = min(
                        worst_value, values.get("fairness_metric_value", 0)
                    )
            else:
                if worst_value is None:
                    worst_value = values.get("fairness_metric_value", 1)
                else:
                    worst_value = max(
                        worst_value, values.get("fairness_metric_value", 1)
                    )

        return worst_value

    def get_best_fairness(self):
        # We have fairness metrics per sensitive feature.
        # The best fairness metric is:
        # - for ratio metrics, the highest fairness value from all sensitive features
        # - for difference metrics, the lowest fairness value from all sensitive features
        # It is needed as bias mitigation stop criteria.

        metrics = self.get_additional_metrics()
        fm = metrics.get("fairness_metrics", {})
        best_value = None
        for col_name, values in fm.items():
            if col_name == "fairness_optimization":
                continue
            if "ratio" in self._fairness_metric.lower():
                if best_value is None:
                    best_value = values.get("fairness_metric_value", 0)
                else:
                    best_value = max(best_value, values.get("fairness_metric_value", 0))
            else:
                if best_value is None:
                    best_value = values.get("fairness_metric_value", 1)
                else:
                    best_value = min(best_value, values.get("fairness_metric_value", 1))

        return best_value

    def is_fair(self):
        if self._is_fair is not None:
            return self._is_fair
        metrics = self.get_additional_metrics()
        fm = metrics.get("fairness_metrics", {})
        for col, m in fm.items():
            if col == "fairness_optimization":
                continue
            if not m.get("is_fair", True):
                self._is_fair = False
                return False
        self._is_fair = True
        return False

    def save(self, results_path, model_subpath):
        start_time = time.time()
        model_path = os.path.join(results_path, model_subpath)
        logger.info(f"Save the model {model_path}")

        type_of_predictions = (
            "validation" if "k_folds" not in self.validation_params else "out_of_folds"
        )
        predictions_fname = os.path.join(
            model_subpath, f"predictions_{type_of_predictions}.csv"
        )
        self._oof_predictions_fname = os.path.join(results_path, predictions_fname)
        predictions = self.get_out_of_folds()
        predictions.to_csv(self._oof_predictions_fname, index=False)

        saved = [os.path.join(model_subpath, l.get_fname()) for l in self.learners]

        with open(os.path.join(model_path, "framework.json"), "w") as fout:
            preprocessing = [p.to_json() for p in self.preprocessings]
            learners_params = [learner.get_params() for learner in self.learners]

            desc = {
                "uid": self.uid,
                "name": self._name,
                "preprocessing": preprocessing,
                "learners": learners_params,
                "params": self.params,
                "saved": saved,
                "predictions_fname": predictions_fname,
                "metric_name": self.get_metric_name(),
                "final_loss": self.get_final_loss(),
                "train_time": self.get_train_time(),
                "is_stacked": self._is_stacked,
                "joblib_version": joblib.__version__,
            }
            desc["final_loss"] = str(desc["final_loss"])
            if self._threshold is not None:
                desc["threshold"] = self._threshold
            if self._single_prediction_time is not None:
                desc["single_prediction_time"] = self._single_prediction_time
            fout.write(json.dumps(desc, indent=4))

        learning_curve_metric = self.learners[0].get_metric_name()
        if learning_curve_metric is None:
            learning_curve_metric = self.get_metric_name()

        LearningCurves.plot(
            [l.name for l in self.learners],
            learning_curve_metric,
            model_path,
            trees_in_iteration=self.additional_params.get("trees_in_step"),
        )

        # call additional metics just to be sure they are computed
        self._additional_metrics = self.get_additional_metrics()

        AdditionalMetrics.save(
            self._additional_metrics, self._ml_task, self.model_markdown(), model_path
        )

        with open(os.path.join(model_path, "status.txt"), "w") as fout:
            fout.write("ALL OK!")

        # Adding save time to total train time
        self.train_time += time.time() - start_time

    def model_markdown(self):
        long_name = AlgorithmsRegistry.get_long_name(
            self._ml_task, self.learner_params["model_type"]
        )
        short_name = self.learner_params["model_type"]
        desc = f"# Summary of {self.get_name()}\n\n"

        desc += "[<< Go back](../README.md)\n\n"

        if long_name == short_name:
            desc += f"\n## {short_name}\n"
        else:
            desc += f"\n## {long_name} ({short_name})\n"
        for k, v in self.learner_params.items():
            if k in ["model_type", "ml_task", "seed"]:
                continue
            desc += f"- **{k}**: {v}\n"
        desc += "\n## Validation\n"
        for k, v in self.validation_params.items():
            if "path" not in k:
                desc += f" - **{k}**: {v}\n"
        desc += "\n## Optimized metric\n"
        desc += f"{self.get_metric_name()}\n"
        desc += "\n## Training time\n"
        desc += f"\n{np.round(self.train_time,1)} seconds\n"
        return desc

    @staticmethod
    def load(results_path, model_subpath, lazy_load=True):
        model_path = os.path.join(results_path, model_subpath)
        logger.info(f"Loading model framework from {model_path}")

        json_desc = json.load(open(os.path.join(model_path, "framework.json")))

        joblib_version_computer = joblib.__version__
        joblib_version_framework = json_desc.get("joblib_version")

        if (
            joblib_version_framework is not None
            and joblib_version_computer != joblib_version_framework
        ):
            raise AutoMLException(
                f"Joblib version mismatch. Computer: {joblib_version_computer}, Framework: {joblib_version_framework}. Change to Framework version!"
            )

        mf = ModelFramework(json_desc["params"])
        mf.uid = json_desc.get("uid", mf.uid)
        mf._name = json_desc.get("name", mf._name)
        mf._threshold = json_desc.get("threshold")
        mf.train_time = json_desc.get("train_time", mf.train_time)
        mf.final_loss = json_desc.get("final_loss", mf.final_loss)
        mf.metric_name = json_desc.get("metric_name", mf.metric_name)
        mf._is_stacked = json_desc.get("is_stacked", mf._is_stacked)
        mf._single_prediction_time = json_desc.get(
            "single_prediction_time", mf._single_prediction_time
        )
        predictions_fname = json_desc.get("predictions_fname")
        if predictions_fname is not None:
            mf._oof_predictions_fname = os.path.join(results_path, predictions_fname)

        mf.learners = []
        for learner_desc, learner_subpath in zip(
            json_desc.get("learners"), json_desc.get("saved")
        ):
            learner_path = os.path.join(results_path, learner_subpath)
            l = AlgorithmFactory.load(learner_desc, learner_path, lazy_load)
            mf.learners += [l]

        mf.preprocessings = []
        for p in json_desc.get("preprocessing"):
            ps = Preprocessing()
            ps.from_json(p, results_path)
            mf.preprocessings += [ps]

        return mf

involved_model_names()

Returns the list of all models involved in the current model. For single model, it returns the list with the name of the model. For ensemble model, it returns the list with the name of the ensemble and all internal models (used to build ensemble). For single model but trained on stacked data, it returns the list with the name of the model (names of models used in stacking are not included).

Source code in supervised\model_framework.py
412
413
414
415
416
417
418
419
def involved_model_names(self):
    """Returns the list of all models involved in the current model.
    For single model, it returns the list with the name of the model.
    For ensemble model, it returns the list with the name of the ensemble and all internal models
    (used to build ensemble).
    For single model but trained on stacked data, it returns the list with the name of the model
    (names of models used in stacking are not included)."""
    return [self._name]

is_valid()

is_valid is used in Ensemble to check if it has more than 1 model in it. If Ensemble has only 1 model in it, then Ensemble shouldn't be used as best model

Source code in supervised\model_framework.py
421
422
423
424
425
def is_valid(self):
    """is_valid is used in Ensemble to check if it has more than 1 model in it.
    If Ensemble has only 1 model in it, then Ensemble shouldn't be used as best model
    """
    return True