Skip to content

Summary of 5_LightGBM

<< Go back

LightGBM

  • n_jobs: 6
  • objective: multiclass
  • num_leaves: 15
  • learning_rate: 0.05
  • feature_fraction: 0.8
  • bagging_fraction: 0.5
  • min_data_in_leaf: 50
  • metric: custom
  • custom_eval_metric_name: f1
  • num_class: 6
  • explain_level: 1

Validation

  • validation_type: kfold
  • k_folds: 5
  • shuffle: True
  • stratify: True
  • random_seed: 42

Optimized metric

f1

Training time

27.5 seconds

Metric details

0 1 2 3 4 5 accuracy macro avg weighted avg logloss
precision 0.970812 0.96534 0.971355 0.98567 0.992358 0.997917 0.980461 0.980575 0.98054 0.066517
recall 0.98619 0.962868 0.968878 0.990741 0.993986 0.976057 0.980461 0.979787 0.980461 0.066517
f1-score 0.97844 0.964103 0.970115 0.988199 0.993171 0.986866 0.980461 0.980149 0.980466 0.066517
support 2462 1562 1960 1944 1829 1963 0.980461 11720 11720 0.066517

Confusion matrix

Predicted as 0 Predicted as 1 Predicted as 2 Predicted as 3 Predicted as 4 Predicted as 5
Labeled as 0 2428 8 4 19 0 3
Labeled as 1 2 1504 50 2 4 0
Labeled as 2 7 46 1899 2 5 1
Labeled as 3 16 0 1 1926 1 0
Labeled as 4 5 0 1 5 1818 0
Labeled as 5 43 0 0 0 4 1916

Learning curves

Learning curves

Permutation-based Importance

Permutation-based Importance

Confusion Matrix

Confusion Matrix

Normalized Confusion Matrix

Normalized Confusion Matrix

ROC Curve

ROC Curve

Precision Recall Curve

Precision Recall Curve

<< Go back