Skip to content

Summary of 4_Xgboost

<< Go back

Extreme Gradient Boosting (Xgboost)

  • n_jobs: 6
  • objective: multi:softprob
  • eta: 0.1
  • max_depth: 8
  • min_child_weight: 1
  • subsample: 1.0
  • colsample_bytree: 1.0
  • eval_metric: f1
  • num_class: 6
  • explain_level: 1

Validation

  • validation_type: kfold
  • k_folds: 5
  • shuffle: True
  • stratify: True
  • random_seed: 42

Optimized metric

f1

Training time

37.9 seconds

Metric details

0 1 2 3 4 5 accuracy macro avg weighted avg logloss
precision 0.9642 0.964194 0.972862 0.983607 0.992333 0.998953 0.978925 0.979358 0.979078 0.0661003
recall 0.984565 0.965429 0.969388 0.987654 0.990705 0.972491 0.978925 0.978372 0.978925 0.0661003
f1-score 0.974277 0.964811 0.971122 0.985626 0.991518 0.985545 0.978925 0.978817 0.978948 0.0661003
support 2462 1562 1960 1944 1829 1963 0.978925 11720 11720 0.0661003

Confusion matrix

Predicted as 0 Predicted as 1 Predicted as 2 Predicted as 3 Predicted as 4 Predicted as 5
Labeled as 0 2424 7 5 25 0 1
Labeled as 1 2 1508 47 0 5 0
Labeled as 2 9 47 1900 1 3 0
Labeled as 3 19 2 0 1920 3 0
Labeled as 4 9 0 1 6 1812 1
Labeled as 5 51 0 0 0 3 1909

Learning curves

Learning curves

Permutation-based Importance

Permutation-based Importance

Confusion Matrix

Confusion Matrix

Normalized Confusion Matrix

Normalized Confusion Matrix

ROC Curve

ROC Curve

Precision Recall Curve

Precision Recall Curve

<< Go back