Skip to content

Summary of 2_Default_Xgboost_SelectedFeatures

<< Go back

Extreme Gradient Boosting (Xgboost)

  • n_jobs: 6
  • objective: multi:softprob
  • eta: 0.075
  • max_depth: 6
  • min_child_weight: 1
  • subsample: 1.0
  • colsample_bytree: 1.0
  • eval_metric: f1
  • num_class: 6
  • explain_level: 1

Validation

  • validation_type: kfold
  • k_folds: 5
  • shuffle: True
  • stratify: True
  • random_seed: 42

Optimized metric

f1

Training time

38.2 seconds

Metric details

0 1 2 3 4 5 accuracy macro avg weighted avg logloss
precision 0.969988 0.963555 0.972308 0.981614 0.991785 0.99792 0.979437 0.979528 0.979527 0.061113
recall 0.984565 0.964789 0.967347 0.988683 0.990159 0.977585 0.979437 0.978855 0.979437 0.061113
f1-score 0.977222 0.964171 0.969821 0.985136 0.990971 0.987648 0.979437 0.979162 0.97945 0.061113
support 2462 1562 1960 1944 1829 1963 0.979437 11720 11720 0.061113

Confusion matrix

Predicted as 0 Predicted as 1 Predicted as 2 Predicted as 3 Predicted as 4 Predicted as 5
Labeled as 0 2424 7 3 25 0 3
Labeled as 1 2 1507 47 1 5 0
Labeled as 2 10 48 1896 2 4 0
Labeled as 3 16 2 1 1922 3 0
Labeled as 4 7 0 3 7 1811 1
Labeled as 5 40 0 0 1 3 1919

Learning curves

Learning curves

Permutation-based Importance

Permutation-based Importance

Confusion Matrix

Confusion Matrix

Normalized Confusion Matrix

Normalized Confusion Matrix

ROC Curve

ROC Curve

Precision Recall Curve

Precision Recall Curve

<< Go back