Skip to content

Summary of 2_Default_Xgboost_GoldenFeatures

<< Go back

Extreme Gradient Boosting (Xgboost)

  • n_jobs: 6
  • objective: multi:softprob
  • eta: 0.075
  • max_depth: 6
  • min_child_weight: 1
  • subsample: 1.0
  • colsample_bytree: 1.0
  • eval_metric: f1
  • num_class: 6
  • explain_level: 1

Validation

  • validation_type: kfold
  • k_folds: 5
  • shuffle: True
  • stratify: True
  • random_seed: 42

Optimized metric

f1

Training time

40.3 seconds

Metric details

0 1 2 3 4 5 accuracy macro avg weighted avg logloss
precision 0.966521 0.964789 0.972848 0.981623 0.992869 0.998433 0.979181 0.979514 0.97931 0.0676023
recall 0.984972 0.964789 0.968878 0.989198 0.989612 0.974019 0.979181 0.978578 0.979181 0.0676023
f1-score 0.975659 0.964789 0.970859 0.985396 0.991238 0.986075 0.979181 0.979003 0.979198 0.0676023
support 2462 1562 1960 1944 1829 1963 0.979181 11720 11720 0.0676023

Confusion matrix

Predicted as 0 Predicted as 1 Predicted as 2 Predicted as 3 Predicted as 4 Predicted as 5
Labeled as 0 2425 6 6 23 0 2
Labeled as 1 2 1507 46 2 5 0
Labeled as 2 8 47 1899 2 4 0
Labeled as 3 17 2 0 1923 2 0
Labeled as 4 9 0 1 8 1810 1
Labeled as 5 48 0 0 1 2 1912

Learning curves

Learning curves

Permutation-based Importance

Permutation-based Importance

Confusion Matrix

Confusion Matrix

Normalized Confusion Matrix

Normalized Confusion Matrix

ROC Curve

ROC Curve

Precision Recall Curve

Precision Recall Curve

<< Go back