Skip to content

Summary of 19_Xgboost_SelectedFeatures

<< Go back

Extreme Gradient Boosting (Xgboost)

  • n_jobs: 6
  • objective: multi:softprob
  • eta: 0.05
  • max_depth: 5
  • min_child_weight: 1
  • subsample: 1.0
  • colsample_bytree: 1.0
  • eval_metric: f1
  • num_class: 6
  • explain_level: 1

Validation

  • validation_type: kfold
  • k_folds: 5
  • shuffle: True
  • stratify: True
  • random_seed: 42

Optimized metric

f1

Training time

47.6 seconds

Metric details

0 1 2 3 4 5 accuracy macro avg weighted avg logloss
precision 0.969952 0.967266 0.971924 0.981132 0.992337 0.997916 0.979863 0.980088 0.979955 0.0655859
recall 0.983347 0.964789 0.971429 0.989712 0.991252 0.975548 0.979863 0.979346 0.979863 0.0655859
f1-score 0.976603 0.966026 0.971676 0.985403 0.991794 0.986605 0.979863 0.979685 0.979875 0.0655859
support 2462 1562 1960 1944 1829 1963 0.979863 11720 11720 0.0655859

Confusion matrix

Predicted as 0 Predicted as 1 Predicted as 2 Predicted as 3 Predicted as 4 Predicted as 5
Labeled as 0 2421 9 6 23 0 3
Labeled as 1 2 1507 47 2 4 0
Labeled as 2 9 41 1904 3 3 0
Labeled as 3 14 1 1 1924 4 0
Labeled as 4 6 0 1 8 1813 1
Labeled as 5 44 0 0 1 3 1915

Learning curves

Learning curves

Permutation-based Importance

Permutation-based Importance

Confusion Matrix

Confusion Matrix

Normalized Confusion Matrix

Normalized Confusion Matrix

ROC Curve

ROC Curve

Precision Recall Curve

Precision Recall Curve

<< Go back