Skip to content

Summary of 16_LightGBM_SelectedFeatures

<< Go back

LightGBM

  • n_jobs: 6
  • objective: multiclass
  • num_leaves: 95
  • learning_rate: 0.1
  • feature_fraction: 0.5
  • bagging_fraction: 1.0
  • min_data_in_leaf: 10
  • metric: custom
  • custom_eval_metric_name: f1
  • num_class: 6
  • explain_level: 1

Validation

  • validation_type: kfold
  • k_folds: 5
  • shuffle: True
  • stratify: True
  • random_seed: 42

Optimized metric

f1

Training time

41.7 seconds

Metric details

0 1 2 3 4 5 accuracy macro avg weighted avg logloss
precision 0.970167 0.962916 0.972694 0.989236 0.997801 0.997411 0.98157 0.981704 0.981662 0.0531892
recall 0.990658 0.964149 0.963265 0.992798 0.992346 0.981151 0.98157 0.980728 0.98157 0.0531892
f1-score 0.980305 0.963532 0.967957 0.991014 0.995066 0.989214 0.98157 0.981181 0.981577 0.0531892
support 2462 1562 1960 1944 1829 1963 0.98157 11720 11720 0.0531892

Confusion matrix

Predicted as 0 Predicted as 1 Predicted as 2 Predicted as 3 Predicted as 4 Predicted as 5
Labeled as 0 2439 10 1 9 0 3
Labeled as 1 4 1506 50 0 2 0
Labeled as 2 20 47 1888 3 1 1
Labeled as 3 13 1 0 1930 0 0
Labeled as 4 5 0 2 6 1815 1
Labeled as 5 33 0 0 3 1 1926

Learning curves

Learning curves

Permutation-based Importance

Permutation-based Importance

Confusion Matrix

Confusion Matrix

Normalized Confusion Matrix

Normalized Confusion Matrix

ROC Curve

ROC Curve

Precision Recall Curve

Precision Recall Curve

<< Go back