Skip to content

Summary of 12_Xgboost

<< Go back

Extreme Gradient Boosting (Xgboost)

  • n_jobs: 6
  • objective: multi:softprob
  • eta: 0.075
  • max_depth: 7
  • min_child_weight: 1
  • subsample: 1.0
  • colsample_bytree: 1.0
  • eval_metric: f1
  • num_class: 6
  • explain_level: 1

Validation

  • validation_type: kfold
  • k_folds: 5
  • shuffle: True
  • stratify: True
  • random_seed: 42

Optimized metric

f1

Training time

40.4 seconds

Metric details

0 1 2 3 4 5 accuracy macro avg weighted avg logloss
precision 0.96073 0.965451 0.971867 0.984103 0.993959 0.998953 0.978498 0.979177 0.978686 0.0713888
recall 0.983753 0.966069 0.969388 0.98714 0.989612 0.971982 0.978498 0.977991 0.978498 0.0713888
f1-score 0.972105 0.96576 0.970626 0.985619 0.991781 0.985283 0.978498 0.978529 0.978531 0.0713888
support 2462 1562 1960 1944 1829 1963 0.978498 11720 11720 0.0713888

Confusion matrix

Predicted as 0 Predicted as 1 Predicted as 2 Predicted as 3 Predicted as 4 Predicted as 5
Labeled as 0 2422 7 8 24 0 1
Labeled as 1 4 1509 45 0 4 0
Labeled as 2 11 45 1900 1 3 0
Labeled as 3 20 2 0 1919 2 1
Labeled as 4 11 0 2 6 1810 0
Labeled as 5 53 0 0 0 2 1908

Learning curves

Learning curves

Permutation-based Importance

Permutation-based Importance

Confusion Matrix

Confusion Matrix

Normalized Confusion Matrix

Normalized Confusion Matrix

ROC Curve

ROC Curve

Precision Recall Curve

Precision Recall Curve

<< Go back